Compact modeling and simulation of Random Telegraph Noise under non-stationary conditions in the presence of random dopants
نویسندگان
چکیده
0026-2714/$ see front matter 2012 Elsevier Ltd. A http://dx.doi.org/10.1016/j.microrel.2012.07.011 ⇑ Corresponding author. Tel.: +55 51 81002315; fax E-mail address: [email protected] (G. Wirth). A new methodology for circuit level transient simulation of Random Telegraph Noise (RTN) is proposed. The physically based methodology properly models the microscopic phenomena involved in RTN, including their stochastic nature. Using a modified BSIM code, the compact model is implemented in a SPICE simulator, accounting for non-stationary RTN effects under arbitrary bias. The probability of traps to capture or emit charge carriers is updated at each time step of the transient simulation according to the actual bias conditions of the device. Atomistic device simulations are performed in order to study the impact of trap position along the channel on the amplitude of the contribution of a trap to RTN. These device simulations take into account short-range Coulomb interactions and show the relevance of large local deviations of mobility values of carrier electrons, particularly for traps near the source end of the channel. As a case study, jitter in an oscillator is simulated. It is shown that the methodology properly addresses open issues in the literature, by properly accounting for bias-dependent, non-stationary statistic of RTN phenomena relevant to the design of integrated circuits. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Effect of random telegraph noise on entanglement and nonlocality of a qubit-qutrit system
We study the evolution of entanglement and nonlocality of a non-interacting qubit-qutrit system under the effect of random telegraph noise (RTN) in independent and common environments in Markovian and non-Markovian regimes. We investigate the dynamics of qubit-qutrit system for different initial states. These systems could be existed in far astronomical objects. A monotone decay of the nonlocalit...
متن کاملNumerical Simulation of Random Irregular Waves for Wave Generation in Laboratory Flumes
Understanding of wave hydrodynamics and its effects are important for engineers and scientists. Important insights may be gained from laboratory studies. Often the waves are simulated in laboratory flumes do not have the full characteristics of real sea waves. It is then necessary to present reliable methods of wave generation in wave flumes. In this paper, the results of numerically simulate...
متن کاملTREND-CYCLE ESTIMATION USING FUZZY TRANSFORM OF HIGHER DEGREE
In this paper, we provide theoretical justification for the application of higher degree fuzzy transform in time series analysis. Under the assumption that a time series can be additively decomposed into a trend-cycle, a seasonal component and a random noise, we demonstrate that the higher degree fuzzy transform technique can be used for the estimation of the trend-cycle, which is one of the ba...
متن کاملRandom telegraph signal noise simulation of decanano MOSFETs subject to atomic scale structure variation
As MOSFETs shrink into the decanano regime it is predicted that random telegraph signals (RTS), resulting from trapping events in defect states near the Si/SiO2 interface, will significantly affect analogue and digital circuit performance. At these same scales, intrinsic parameter fluctuations introduced by atomic differences between devices will also be significant. In this work, a methodology...
متن کاملRandom Projection-Based Anderson-Darling Test for Random Fields
In this paper, we present the Anderson-Darling (AD) and Kolmogorov-Smirnov (KS) goodness of fit statistics for stationary and non-stationary random fields. Namely, we adopt an easy-to-apply method based on a random projection of a Hilbert-valued random field onto the real line R, and then, applying the well-known AD and KS goodness of fit tests. We conclude this paper by studying the behavior o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microelectronics Reliability
دوره 52 شماره
صفحات -
تاریخ انتشار 2012